

Extraction of Doppler Observables from Open-Loop Recordings for the Juno Radio Science Investigation

Dustin Buccino, Daniel Kahan, Oscar Yang, Kamal Oudrhiri Planetary Radar and Radio Science Group Jet Propulsion Laboratory, California Institute of Technology

Overview

Agenda

- Juno Mission Overview
- 2. Gravity Science at Jupiter
- Instrumentation
- Signal Processing of Open-Loop Recordings
- 5. Performance and Results
- Conclusion

Team Members

- Jet Propulsion Laboratory Pasadena, CA
 - Bill Folkner, Gravity PI
 - Instrument Engineering
 - · Dustin Buccino, Instrument Operations Lead
 - Danny Kahan, Instrument Operations
 - Oscar Yang, Instrument Operations
 - Kamal Oudrhiri, Planetary Radar and Radio Science Supervisor
 - Advanced Water Vapor Radiometer
 - Elias Barbinis, Meegyeong Paik, Scott Bryant
 - DSN Systems Engineers
 - Andre Jongeling
 - Tim Cornish
- Southwest Research Institute San Antonio, TX
 - John Anderson, Gravity Co-I
- Sapienza University of Rome Rome, Italy
 - Luciano less, Gravity Co-I
- University of Bologna Bologna, Italy
 - Paolo Tortora
- University of Pisa Pisa, Italy
 - Andrea Miliani
- Thales Alenia Space Rome, Italy
 - Lorenzo Simone, Ka-band Translator

Juno Mission

Gravity Science

- Examine changes in phase/frequency between the ground-based receiving stations of the NASA Deep Space Network and the Juno spacecraft to determine:
 - Mass/density
 - Spherical harmonics (gravitational field)
 - Lower-degree terms: oblateness, rotational axis, deep interior structure
 - Is there a core?
 - How deep are the winds (differential rotation)?
 - What effect do the moons have (tidal effect)?

Gravity Science Instrument

Juno Spacecraft

- X-band Transponder (Small Deep Space Transponder, JPL)
- Ka-band Translator (ASI/Thales Alenia Space-Italy)
- 2.5-m High Gain Antenna

X-band Uplink (7.2 GHz)

X-band Downlink (8.4 GHz)

X-band Downlink (34 GHz)

Ka-band Downlink (32 GHz)

Ka-band Downlink (32 GHz)

Deep Space Network DSS-25 34-m Beam Waveguide Antenna

- Hydrogen Maser Frequency Reference
- 18 kW X-band Klystron Transmitter
- 0.3 kW Ka-band Solid State Transmitter
- Closed-Loop and Open-Loop Receivers @ X- and Ka-band
- Advanced Water Vapor Radiometers

Open-Loop Recordings

Signal Processing – Current Standard

Signal Processing – New Techniques for Juno

Thermal Noise Optimization

Thermal noise contribution to Doppler error:

• Is optimized when:

$$B_L = \frac{1}{2T_c} \qquad T_c = 10 \text{ s} \Rightarrow B_L = 0.05 \text{ Hz}$$

$$T_c = 1 \text{ s} \Rightarrow B_L = 0.5 \text{ Hz}$$

$$T_c = 0.1 \text{ s} \Rightarrow B_L = 5 \text{ Hz}$$

Performance and Results

 Goal: Counter-rotate IQ Values to remove systematic effects for optimal phase-locked loop processing

Effects In Consideration:

- Spacecraft trajectory
- Troposphere Delay
- Ionosphere Delay
- Solar Plasma/lo Plasma Torus
- Ground Station Biases
- Spacecraft Transponder Delay
- By counter-rotating the IQ values, we are able to obtain a ~50% reduction in noise in the residual frequency

PLL Run	RMS (Hz)
First-run ($B_L = 3 \text{ Hz}$, $T_c = 1 \text{s}$)	25.1 mHz
Post counter-rotation ($B_L = 0.5 \text{ Hz}$, $T_c = 1s$)	12.9 mHz

Initial Results from the Gravity Investigation

- Doppler Observables computed with the technique presented provide the input for determination of Gravitational Field Parameters
- Gravitational Field Parameters are a spherical harmonics expansion of the gravity potential

$$U = \frac{\mu}{r} - \frac{\mu^*}{r} \sum_{l=1}^{\infty} \left(\frac{a_e}{r}\right)^l P_l(\sin\phi) J_l + \frac{\mu^*}{r} \sum_{l=1}^{\infty} \sum_{m=1}^l \left(\frac{a_e}{r}\right)^l P_{lm}(\sin\phi) [C_{lm}\cos m\lambda + S_{lm}\sin m\lambda]$$

- First two orbits estimate the gravity field to Degree 8
- Factor of 5 improvement from previous measurements of the gravity field
- Analysis of the first two perijove passes has suggested that Jupiter's core is diluted

Conclusion & Future Work

 Juno Radio Science Team has developed a technique to process open-loop recordings collected in a high dynamic environment into high-precision Doppler observables

- Apply this technique to other missions are there any major improvements?
- Tools and programs largely segmented work on merging/automation
- Possibility to extract telemetry from the open-loop recordings
 - Service currently provided by closed-loop receivers; open-loop can be used in the event of an anomaly or as a backup in a critical event

jpl.nasa.gov